Ing. Šárka Mikmeková Ústav přístrojové techniky AVČR, v.v.i.

Téma: Studium progresivních materiálů pomocí mikroskopie pomalými elektrony

1. Úvod

V dnešní době existuje celá řada technik, které nám umožňují studovat mikrostrukturu pevných látek. Mezi nejznámější mikroskopické metody patří "klasická" rastrovací elektronová mikroskopie (SEM), (rastrovací) transmisní elektronová mikroskope ((S)TEM) a mikroskopie fokusovaným iontovým svazkem (FIB). Výrazně méně známou mikroskopickou metodou (a to především v mimo akademickou a univerzitní sféru) je mikroskopie pomalými elektrony. Za pomalé elektrony považujeme elektrony s energií menší než 1 keV a za velmi pomalé s energií pod 100 eV. Nízkoenergiová rastrovací elektronová mikroskopie (SLEEM) má celou řadu výhod. Především se jedná o zvýšení kontrastu na nízkých energiích primárního svazku. S poklesem energie primárního svazku rozte výtěžek sekundárních (SE) i zpětně odražených elektronů (BSE), zmenšuje se interakční objem (dostáváme informaci o povrchu vzorku), zlepšuje se potenciálový kontrast, dochází k redukci nabíjení vzorků a pod energií 100 eV se snižuje radiační poškození. Všechny tyto zmíněné přednosti dělají z této metody velice silný a užitečný nástroj pro studium jak klasických, tak nových pokročilých materiálů.

2. SLEEM a katodová čočka

Existuje řada metod, jak dosáhnout nízkých energií dopadu primárního svazku. Jedna z možností je doplnit klasický SEM o elektronově optický prvek nazývaný katodová čočka. Tento prvek slouží ke zpomalení zformovaného a zaostřeného primárního svazku na konečnou energii dopadu. Energie dopadu se dá měnit velice snadno a zásahy do tubusu mikroskopu jsou minimální. Schéma uspořádání katodové čočky je na obr. 2.1. Katodou katodové čočky je povrch vzorku a energie dopadajících elektronů je dána rozdílem mezi potenciálem trysky a vzorku. Anodu katodové čočky tvoří v našem případě krystal YAG (Yttrium – Aluminium - Garnet, Y3Al5O12) s malým otvorem o průměru 300 µm na optické ose. Anoda je současně detektorem signálních elektronů.

Obr. 2.1 Schéma uspořádání katodové čočky.

3. Aplikace

Mikroskopie pomalými elektrony je velice přínosnou metodou pro studium celé řady materiálů – od neželezných slitin a ocelí, přes keramiku až po nové, progresivní materiály a kompozity. V porovnání s konvenčními metodami studia mikrostruktury je SLEEM citlivější na topografii povrchu, na chemické složení vzorku a na krystalovou orientaci. Na následujících příkladech bude jasně demonstrováno, že snímky struktury pořízené v módu katodové čočky obsahují mnohem více informací o struktuře vzorku a jeho složení.

3.1 Krystalografický kontrast v SLEEM

Vysoká citlivost SLEEMu na krystalovou orientaci vzorku je dána nejen velice malým interakčním objemem elektronů ve vzorku, ale i schopností detekce signálních elektronů odražených pod velkým úhlem od optické osy. Právě tyto elektrony nesou informaci o krystalové struktuře. Tento jev je demonstrován na sérii snímků stejné oblasti na Al slitině s různým úhlem náklonu vzorku vůči elektronovému svazku.

3.1 Mikrosnímky Al slitiny pořízené při 2 keV a náklon vzorku byl (a) 0°, (b) 0°28', (c) 0°56', (d) 1°24'.

3.2 Studium termální stability UFG Cu

Ultrajemnorznné (UFG) kovy jsou velice perspektiví skupinou materiálu z hlediska mechanických vlasností. Avšak teplotní stabilita UFG materiálů připravených metodou SPD není velká a k hrubnutí zrna u těchto materiálů dochází při teplotě 0,4 teploty tavení dané pro konkrétní materiál. Hnací silou vedoucí k růstu zrn je energie nakumulovaná v dislokační struktuře. Při žíhání UFG materiálů lze vypozorovat tři stádia změn mikrostruktury. V prvním stádiu dochází k zotavení z nerovnovážné struktury na hranicích zrn a tento proces je spojen s částečnou anihilací defektů na hranicích zrn a s relaxací elastických pnutí. Druhé stádium procesu je charakterizováno migrací nerovnovážných hranic zrn, což má za následek jejich abnormální růst. Ve třetím stádiu dochází k normálnímu růstu zrn. Byla zkoumána struktura struktura UFG Cu připravené metodou úhlového kanálového protlačování, a to jak v základním stavu, tak po vyžíhání (180°C, Ar atmosféra, 6 minut). Pozorování vzorku probíhalo v ultra-vysokém vakuu a jeho povrch byl před pozorováním očištěn ionty od nativní oxidové vrstvy. Na obr. 3.2 vidíte snímky UFG Cu před a po žíhání.

Obr. 3.2 Mikrosnímky struktury UFG Cu v základním stavu (a) a po žíhání (b) pořízené při energii dopadu primárních elektronů 10 eV.

3.3 Mapování vnitřního napětí v oceli

V plně vyžíhaném krystalickém materiálu má každé zrno pevně danou krystalografickou orientaci, která se v rámci daného zrna téměř nemění. V případě, že na polykrystal aplikujeme plastické napětí, pohyb dislokací v zrnu způsobí tvorbu buněk a zubzrn. Výsledkem tohoto jsou změny v krystalové orientaci v rámci původně homogenně krystalograficky orientovaného zrna. Elastická pnutí mají za následek distorzi krystalové mříže a změny v uspořádání atomů. Díky vysoké citlivosti SLEEMu i na malé změny v krystalové orientaci a vysokému kontrastu mezi různě orientovanými zrny, můžeme pozorovat důsledky jak plastického, tak elastického napětí v materiálu, jak demonstruje obr. 3.3.

Obr. 3.3 Mikrostruktura feritické oceli válcované za tepla. Energie dopadu primárních elektronů byla 5 keV.

3.4 Charakterizace tenkých vrstev

Se snižující energií primárního svazku se zkracuje délka doletu primárních elektronů v materiálu a roste výtěžek SE elektronů, které nesou informaci o topografii povrchu vzorku. Na obr. 3.4 je zobrazena vrstva mikrokrystalické Cu na Si substrátu v klasickém režimu SE a BSE a navíc v režimu CL, kdy byly primární elektrony zpomaleny na 5 keV. Snímky jsou pořízeny ve standardních vakuových podmínkách. Dále byl stejný vzorek pozorován v ulravakuu, kde byl jeho povrch před pozorováním čištěn Ar ionty. Vrstva nativního oxidu je pro elektrony s nízkou energií neprostupná a tak brání pozorování skutečné struktury materiálu, což demonstruje obr. 3.5. Na obr. 3.6 je zobrazena stejná oblast vzorku jako v 3.4 s tím rozdílem, že měření probíhalo v ultra-vakuu a vzorek byl in-situ očištěn ionty. Na těchto snímcích je jeasně vidět, že díky užití pomalých elektronů dostáváme mnohem více informací o vzorku, než je tomu v "klasickém" SEM.

Obr. 3.4 Mikrosnímky pořízené v konvenčním SE módu (a), v BSE módu (b) a s použitím CL módu.

3.5 Srovnání čištěné a nečištěné oblasti na povrch vzorku při 100 eV.

3.6 Vrstva mikrokrystalické Cu zobrazená v CL režimu při 10 eV a bez předpětí na vzorku, kdy byla primární energie svazku 6017 eV.

3.5 Zobrazení rozložení prvků v Mg slitině

Díky nízké hmotnosti a velmi dobrým mechanickým vlastnostem jsou hořčíkové slitiny velmi žádaným a vyvíjeným materiálem. Na vlastnosti těchto slitin má samozřejmě vliv rozložení jednotlivých legujících prvků. Obr. 3.7 ukazuje sérii snímků slitiny AZ96 pořízené s různou energií dopadu primárních elektronů. Se snižující se energií dopadajích elektronů dochází k nárůstu kontrastu mezi oblasti s různým chemickým složením. Informace o složení vzorku byly získány za pomoci EDS prvkové analýzy.

3.8 Mikrosnímky slitiny AZ 96. Energie elektronů byla (a) 9 keV, (b) 8 keV, (c) 7 keV, (d) 6 keV, (e) 5 keV, (f) 4 keV, (g) 3 keV, (h) 2 keV, (i) 1 keV a (j) 0,5 keV.

3.6 Zviditelnění boridových částic v Al matrici

Zkoumaný materiál v tomto případě byl kompozit skládající se z Al matrice, ve které jsou zabudovány boridové částice – MgB2, ZrB2, TiB2 a AlB2. Materiálový kontrast v klasickém SEM je pro případ zobrazení těchto částic velice malý, což znemožňuje přesné studium jejich rozložení v základní matrici. S použitím katodové čočky dostáváme kontrast mezi částicemi a matricí a částicemi mezi sebou navzájem natolik výrazný, že jsme schopni bezpečně určit, o jakou částici se jedná a kde leží. Vývoj kontrastu v závislosti na energii je zobrazen na obr. 3.9. Obr. 3.10 ukazuje zobrazení stejné oblasti v kompozitu při různé energii elektronů.

3.9 Závislost kontrastu mezi boridovými částicemi a hliníkovou matricí na energii dopadu primárních elektronů.

3.10 Boridové částice v Al matrici zobrazené při různé energii dopadu primárních elektronů.

4. Závěr

Vybrané druhy aplikací mikroskopie pomalými elektrony zřetelně demonstrují přínos této metody pro studium celé řady materiálů a ukazují, že SLEEM je metodou velice citlivou na topografii povrchu vzorku, jeho chemické složení a krystalovou orientaci.

Literatura

[1] Müllerová I., Frank L., Scanning low energy electron microscopy, Adv. Imag. Elecron Phys. 128, 2003, s.309-343

[2] Mikmeková Š. et al., Grain contrast imaging in UHV SLEEM, Materials Transaction, Vol. 51, 2010, s. 292-296

[3] Mikmeková Š. et al., Strain mapping by scanning low energy electron microscopy, Key Engineering Materials, Vol. 465, 2011, s. 338-341

[4] Mikmeková Š. et al., FIB induced damage examined with the low energy SEM, Materials Transaction, Vol. 52, 2011, s. 292-296

Podpis vedoucí skupiny Mikroskopie pomalými elektrony:

(Ing. Ilona Müllerová, DrSc.)